模型持久化
以下代碼示例,通過SparkR加載保存 MLLib。
irisDF <-suppressWarnings(createDataFrame(iris)) # Fit a generalized linear model of family "gaussian" with spark.glm
gaussianDF <- irisDF
gaussianTestDF <- irisDF gaussianGLM <- spark.glm(gaussianDF, Sepal_Length ~ Sepal_Width + Species, family = "gaussian")
# Save and then load a fitted MLlib model
modelPath <- tempfile(pattern = "ml", fileext = ".tmp")
write.ml(gaussianGLM, modelPath)
gaussianGLM2 <- read.ml(modelPath)
# Check model summary
summary(gaussianGLM2)
# Check model prediction
gaussianPredictions <- predict(gaussianGLM2, gaussianTestDF)
showDF(gaussianPredictions)
unlink(modelPath)
Find full example code at “examples/src/main/r/ml/ml.R”
關鍵步驟:
- 生成臨時文件路徑,template;
- 寫ml模型,write.ml
- 讀取ml模型,read.ml
- 刪除臨時文件,unlink